Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 57: 149-162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37086778

RESUMO

INTRODUCTION: In solid tumors, regulatory T cell (Treg) and mast cell perform different roles depending on the microenvironment. Nevertheless, mast cell and Treg-mediated interactions in gastric cancer (GC) are unclear, as are their regulation, function, and clinical significance. OBJECTIVE: The present study demonstrated the mechanism of tumor-infiltrating mast cells stimulating ICOS+ regulatory T cells via the IL-33/IL-2 axis to promote the growth of gastric cancer. METHODS: Analyses of 98 patients with GC were conducted to examine mast cell counts, ICOS+ Tregs, and the levels of IL-33 or IL-2. Isolated ICOS+ Treg and CD8+ T cell were stimulated, cultured and tested for their functional abilities in vitro and in vivo. RESULTS: GC patients exhibited a significantly more production of IL-33 in tumors. Mast cell stimulated by tumor-derived IL-33 exhibited a prolonged lifespan through IL-33 mediated inhibition of apoptosis. Moreover, mast cells stimulated by tumor-derived IL-33 secreted IL-2, which induced Treg expansion. These inducible Tregs displayed an activated immunosuppressive phenotype with positive expression for the inducible T cell co-stimulator (ICOS). In vitro, IL-2 from IL to 33-stimulated mast cells induced increased numbers of ICOS+ Tregs with increased immunosuppressive activity against proliferation and effector function of CD8+ T cell. In vivo, ICOS+ Tregs were treated with anti-IL-2 neutralizing antibody followed by co-injection with CD8+ T cells in GC mouse model, which showed an increased CD8+ T cell infiltration and effector molecules production, meanwhile tumor growth and progression were inhibited. Besides, reduction in GC patient survival was associated with tumor-derived ICOS+ Tregs. CONCLUSION: Our results highlight a crosstalk between GC-infiltrating mast cells and ICOS+ Tregs and provide a novel mechanism describing ICOS+ Treg expansion and induction by an IL-33/mast cell/IL-2 signaling axis in GC, and also provide functional evidence that the modulation of this immunosuppressive pathway can attenuate GC-mediated immune tolerance.


Assuntos
Neoplasias Gástricas , Animais , Camundongos , Humanos , Linfócitos T Reguladores , Interleucina-2 , Mastócitos , Interleucina-33 , Linfócitos T CD8-Positivos , Processos Neoplásicos , Microambiente Tumoral , Proteína Coestimuladora de Linfócitos T Induzíveis
2.
Cell Mol Immunol ; 20(8): 924-940, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336990

RESUMO

The interaction between the gastric epithelium and immune cells plays key roles in H. pylori-associated pathology. Here, we demonstrate a procolonization and proinflammatory role of tubulointerstitial nephritis antigen-like 1 (TINAGL1), a newly discovered matricellular protein, in H. pylori infection. Increased TINAGL1 production by gastric epithelial cells (GECs) in the infected gastric mucosa was synergistically induced by H. pylori and IL-1ß via the ERK-SP1 pathway in a cagA-dependent manner. Elevated human gastric TINAGL1 correlated with H. pylori colonization and the severity of gastritis, and mouse TINAGL1 derived from non-bone marrow-derived cells promoted bacterial colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Tinagl1-/- and Tinagl1ΔGEC mice and were increased in mice injected with mouse TINAGL1. Mechanistically, TINAGL1 suppressed CCL21 expression and promoted CCL2 production in GECs by directly binding to integrin α5ß1 to inhibit ERK and activate the NF-κB pathway, respectively, which not only led to decreased gastric influx of moDCs via CCL21-CCR7-dependent migration and, as a direct consequence, reduced the bacterial clearance capacity of the H. pylori-specific Th1 response, thereby promoting H. pylori colonization, but also resulted in increased gastric influx of Ly6Chigh monocytes via CCL2-CCR2-dependent migration. In turn, TINAGL1 induced the production of the proinflammatory protein S100A11 by Ly6Chigh monocytes, promoting H. pylori-associated gastritis. In summary, we identified a model in which TINAGL1 collectively ensures H. pylori persistence and promotes gastritis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Nefrite Intersticial , Camundongos , Humanos , Animais , Gastrite/microbiologia , Gastrite/patologia , Inflamação , Proteínas de Bactérias/metabolismo
3.
Adv Sci (Weinh) ; 9(5): e2103543, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34957697

RESUMO

Neutrophils constitute abundant cellular components in human gastric cancer (GC) tissues, but their protumorigenic subset in pathogenesis of GC progression is unclear. Here, it is found that patients with GC show significantly higher neutrophil infiltration in tumors that is regulated by CXCL12-CXCR4 chemotaxis. These tumor-infiltrating neutrophils express high level immunosuppressive molecules FasL and PD-L2, and this FasL+ PD-L2+ neutrophil subset with a unique phenotype constitutes at least 20% of all neutrophils in advanced GC and predicts poor patient survival. Tumor induces neutrophils to express FasL and PD-L2 proteins with similar phenotype to those in GC tumors in both time-dependent and dose-dependent manners. Mechanistically, Th17 cell-derived IL-17A and tumor cell-derived G-CSF can significantly induce neutrophil FasL and PD-L2 expression via activating ERK-NF-κB and JAK-STAT3 signaling pathway, respectively. Importantly, upon over-expressing FasL and PD-L2, neutrophils acquire immunosuppressive functions on tumor-specific CD8+ T-cells and promote the growth and progression of human GC tumors in vitro and in vivo, which can be reversed by blocking FasL and PD-L2 on these neutrophils. Thus, the work identifies a novel protumorigenic FasL+ PD-L2+ neutrophil subset in GC and provides new insights for human cancer immunosuppression and anti-cancer therapies targeting these pathogenic cells.


Assuntos
Neutrófilos , Neoplasias Gástricas , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Progressão da Doença , Humanos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
4.
Clin Transl Med ; 11(6): e484, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185422

RESUMO

RATIONALE: Neutrophils constitute massive cellular constituents in inflammatory human gastric cancer (GC) tissues, but their roles in pathogenesis of inflammatory T helper (Th) subsets are still unknown. METHODS: Flow cytometry analysis and immunohistochemistry were used to analyze the responses and phenotypes of neutrophils in different samples from 51 patients with GC. Kaplan-Meier plots and Multivariate analysis for the survival of patients were used by log-rank tests and Cox proportional hazards models. Neutrophils and CD4+ T cells were purified and cultured for ex vivo, in vitro and in vivo regulation and function assays. RESULTS: GC patients exhibited increased tumoral neutrophil infiltration with GC progression and poor patient prognosis. Intratumoral neutrophils accumulated in GC tumors via CXCL6/CXCL8-CXCR1-mediated chemotaxis, and expressed activated molecule CD54 and co-signaling molecule B7-H2. Neutrophils induced by tumors strongly expressed CD54 and B7-H2 in both dose- and time-dependent manners, and a close correlation was obtained between the expressions of CD54 and B7-H2 on intratumoral neutrophils. Tumor-derived tumor necrosis factor-α (TNF-α) promoted neutrophil activation and neutrophil B7-H2 expression through ERK-NF-κB pathway, and a significant correlation was found between the levels of TNF-α and CD54+ or B7-H2+ neutrophils in tumor tissues. Tumor-infiltrating and tumor-conditioned neutrophils effectively induced IL-17A-producing Th subset polarization through a B7-H2-dependent manner ex vivo and these polarized IL-17A-producing Th cells exerted protumorigenic roles by promoting GC tumor cell proliferation via inflammatory molecule IL-17A in vitro, which promoted the progression of human GC in vivo; these effects could be reversed when IL-17A is blocked. Moreover, increased B7-H2+ neutrophils and IL-17A in tumors were closely related to advanced GC progression and predicted poor patient survival. CONCLUSION: We illuminate novel underlying mechanisms that TNF-α-activated neutrophils link B7-H2 to protumorigenic IL-17A-producing Th subset polarization in human GC. Blocking this pathological TNF-α-B7-H2-IL-17A pathway may be useful therapeutic strategies for treating GC.


Assuntos
Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Interleucina-17/metabolismo , Ativação de Neutrófilo , Neutrófilos/imunologia , Neoplasias Gástricas/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Prognóstico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Clin Immunol ; 227: 108753, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33945871

RESUMO

Neutrophils are conspicuous components of gastric cancer (GC) tumors, increasing with tumor progression and poor patient survival. However, the phenotype, regulation and clinical relevance of neutrophils in human GC are presently unknown. Most intratumoral neutrophils showed an activated CD54+ phenotype and expressed high level B7-H3. Tumor tissue culture supernatants from GC patients induced the expression of CD54 and B7-H3 on neutrophils in time-dependent and dose-dependent manners. Locally enriched CD54+ neutrophils and B7-H3+ neutrophils positively correlated with increased granulocyte-macrophage colony stimulating factor (GM-CSF) detection ex vivo; and in vitro GM-CSF induced the expression of CD54 and B7-H3 on neutrophils in both time-dependent and dose-dependent manners. Furthermore, GC tumor-derived GM-CSF activated neutrophils and induced neutrophil B7-H3 expression via JAK-STAT3 signaling pathway activation. Finally, intratumoral B7-H3+ neutrophils increased with tumor progression and independently predicted reduced overall survival. Collectively, these results suggest B7-H3+ neutrophils to be potential biomarkers in GC.


Assuntos
Antígenos B7/metabolismo , Carcinoma/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Carcinoma/patologia , Progressão da Doença , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Técnicas In Vitro , Molécula 1 de Adesão Intercelular/metabolismo , Janus Quinases/efeitos dos fármacos , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Prognóstico , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Taxa de Sobrevida , Adulto Jovem
6.
J Immunol Res ; 2021: 6613247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763491

RESUMO

Neutrophils are prominent components of gastric cancer (GC) tumors and exhibit distinct phenotypes in GC environment. However, the phenotype, regulation, and clinical relevance of neutrophils in human GC are presently unknown. Here, immunohistochemistry, real-time PCR, and flow cytometry analyses were performed to examine levels and phenotype of neutrophils in samples from 41 patients with GC, and also isolated, stimulated, and/or cultured neutrophils for in vitro regulation assays. Finally, we performed Kaplan-Meier plots for overall survival by using the log-rank test to evaluate the clinical relevance of neutrophils and their subsets. In our study, neutrophils in tumor tissues were significantly higher than those in nontumor tissues and were positively associated with tumor progression but negatively correlated with GC patient survival. Most intratumoral neutrophils showed an activated CD54+ phenotype and expressed high-level immunosuppressive molecule B7-H4. Tumor tissue culture supernatants from GC patients induced neutrophils to express CD54 and B7-H4 in both time-dependent and dose-dependent manners. Locally enriched CD54+ neutrophils and B7-H4+ neutrophils positively correlated with increased granulocyte-macrophage colony-stimulating factor (GM-CSF) detection ex vivo, and in vitro GM-CSF induced the expression of CD54 and B7-H4 on neutrophils in a time-dependent and dose-dependent manner. Moreover, GC tumor-derived GM-CSF activated neutrophils and induced neutrophil B7-H4 expression via Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) signaling pathway activation. Furthermore, higher intratumoral B7-H4+ neutrophil percentage/number was found in GC patients with advanced tumor node metastasis stage and reduced overall survival following surgery. Our results illuminate a novel regulating mechanism of B7-H4 expression on tumor-activated neutrophils in GC, suggesting that functional inhibition of these novel GM-CSF-B7-H4 pathways may be a suitable therapeutic strategy to treat the immune tolerance feature of GC.


Assuntos
Neutrófilos/imunologia , Neoplasias Gástricas/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Células Cultivadas , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Tolerância Imunológica , Molécula 1 de Adesão Intercelular/metabolismo , Janus Quinases/metabolismo , Naftóis/metabolismo , Estadiamento de Neoplasias , Ativação de Neutrófilo , Fenótipo , Transdução de Sinais , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/mortalidade , Sulfonamidas/metabolismo , Análise de Sobrevida , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética
7.
Mol Cancer Res ; 19(6): 968-978, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33771880

RESUMO

Actin cytoskeleton dynamic rearrangement is required for tumor cell metastasis and is a key characteristic of Helicobacter pylori (H. pylori)-infected host cells. Actin cytoskeleton modulation is coordinated by multiple actin-binding proteins (ABP). Through Kyoto encyclopedia of gene and genomes database, GEPIA website, and real-time PCR data, we found that H. pylori infection significantly induced L-plastin, a key ABP, in gastric cancer cells. We further explored the regulation and function of L-plastin in H. pylori-associated gastric cancer and found that, mechanistically, H. pylori infection induced gastric cancer cells to express L-plastin via cagA-activated ERK signaling pathway to mediate SP1 binding to L-plastin promoter. Moreover, this increased L-plastin promoted gastric cancer cell proliferation and migration in vitro and facilitated the growth and metastasis of gastric cancer in vivo. Finally, we detected the expression pattern of L-plastin in gastric cancer tissues, and found that L-plastin was increased in gastric cancer tissues and that this increase of L-plastin positively correlated with cagA + H. pylori infection status. Overall, our results elucidate a novel mechanism of L-plastin expression induced by H. pylori, and a new function of L-plastin-facilitated growth and metastasis of gastric cancer, and thereby implicating L-plastin as a potential therapeutic target against gastric cancer. IMPLICATIONS: Our results elucidate a novel mechanism of L-plastin expression induced by H. pylori in gastric cancer, and a new function of L-plastin-facilitated gastric cancer growth and metastasis, implicating L-plastin as a potential therapeutic target against gastric cancer.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Sistema de Sinalização das MAP Quinases/genética , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Fator de Transcrição Sp1/genética , Neoplasias Gástricas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Fator de Transcrição Sp1/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Transplante Heterólogo
8.
Cell Mol Gastroenterol Hepatol ; 12(2): 395-425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676046

RESUMO

BACKGROUND & AIMS: Rev-erbα represents a powerful transcriptional repressor involved in immunity. However, the regulation, function, and clinical relevance of Rev-erbα in Helicobacter pylori infection are presently unknown. METHODS: Rev-erbα was examined in gastric samples from H pylori-infected patients and mice. Gastric epithelial cells (GECs) were isolated and infected with H pylori for Rev-erbα regulation assays. Gastric tissues from Rev-erbα-/- and wild-type (littermate control) mice or these mice adoptively transferred with CD4+ T cells from IFN-γ-/- and wild-type mice, bone marrow chimera mice and mice with in vivo pharmacological activation or inhibition of Rev-erbα were examined for bacteria colonization. GECs, CD45+CD11c-Ly6G-CD11b+CD68- myeloid cells and CD4+ T cells were isolated, stimulated and/or cultured for Rev-erbα function assays. RESULTS: Rev-erbα was increased in gastric mucosa of H pylori-infected patients and mice. H pylori induced GECs to express Rev-erbα via the phosphorylated cagA that activated ERK signaling pathway to mediate NF-κB directly binding to Rev-erbα promoter, which resulted in increased bacteria colonization within gastric mucosa. Mechanistically, Rev-erbα in GECs not only directly suppressed Reg3b and ß-defensin-1 expression, which resulted in impaired bactericidal effects against H pylori of these antibacterial proteins in vitro and in vivo; but also directly inhibited chemokine CCL21 expression, which led to decreased gastric influx of CD45+CD11c-Ly6G-CD11b+CD68- myeloid cells by CCL21-CCR7-dependent migration and, as a direct consequence, reduced bacterial clearing capacity of H pylori-specific Th1 cell response. CONCLUSIONS: Overall, this study identifies a model involving Rev-erbα, which collectively ensures gastric bacterial persistence by suppressing host gene expression required for local innate and adaptive defense against H pylori.


Assuntos
Imunidade Adaptativa , Infecções por Helicobacter/imunologia , Helicobacter pylori/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Estômago/microbiologia , Adulto , Idoso , Antígenos de Bactérias/metabolismo , Antígenos CD/metabolismo , Proteínas de Bactérias/metabolismo , Movimento Celular , Contagem de Colônia Microbiana , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/sangue , Infecções por Helicobacter/microbiologia , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Proteínas Associadas a Pancreatite/metabolismo , Estômago/patologia , Células Th1/imunologia , Adulto Jovem , beta-Defensinas/metabolismo
9.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32753468

RESUMO

BACKGROUND: Overexpression of programmed cell death protein 1 (PD-1) is linked to CD8+ T cell dysfunction and contributes to tumor immune escape. However, the prevalence and functional regulations of PD-1 expression on CD8+ T cells in human gastric cancer (GC) remain largely unknown. METHODS: Flow cytometry was performed to analyze the level, phenotype, functional and clinical relevance of PD-1+CD8+ T cells in GC patients. Peripheral blood CD8+ T cells were purified and subsequently exposed to culture supernatants from digested primary GC tumor tissues (TSN) in vitro for PD-1 expression and functional assays. Tumor responses to adoptively transferred TSN-stimulated CD8+ T cells or to the TSN-stimulated CD8+ T cell transfer combined with an anti-PD-1 antibody injection were measured in an in vivo xenograft mouse model. RESULTS: GC patients' tumors showed a significantly increased PD-1+CD8+ T cell infiltration. However, these GC-infiltrating PD-1+CD8+ T cells showed equivalent function to their PD-1-CD8+ counterparts and they did not predict tumor progression. High level of transforming growth factor-ß1 (TGF-ß1) in tumors was positively correlated with PD-1+CD8+ T cell infiltration, and in vitro GC-derived TGF-ß1 induced PD-1 expression on CD8+ T cells via Smad3 signaling, whereas Smad2 signaling was involved in GC-derived TGF-ß1-mediated CD8+ T cell dysfunction. Furthermore, GC-derived TGF-ß1-mediated CD8+ T cell dysfunction contributed to tumor growth in vivo that could not be attenuated by PD-1 blockade. CONCLUSIONS: Our data highlight that GC-derived TGF-ß1 promotes PD-1 independent CD8+ T cell dysfunction. Therefore, restoring CD8+ T cell function by a combinational PD-1 and TGF-ß1 blockade might benefit future GC immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Receptor de Morte Celular Programada 1/imunologia , Neoplasias Gástricas/imunologia , Animais , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
10.
Cell Death Dis ; 11(7): 498, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612120

RESUMO

Gastric epithelial cells (GECs) provide the first point of contact of the host by Helicobacter pylori (H. pylori), and the interaction between H. pylori and GECs plays a critical role in H. pylori-associated diseases. Aberrant expression of transcription factors (TFs) contributes to the pathogenesis of inflammatory disorders, including H. pylori-associated gastritis. ETS (E26 transformation specific) transcription factor family is one of the largest families of evolutionarily conserved TFs, regulating critical functions during cell homeostasis. We screened ETS family gene expression in H. pylori-infected mouse and human GECs and found that ETS1 (ETS proto-oncogene 1, transcription factor) expression was highly affected by H. pylori infection. Then, we reported that ETS1 was induced in GECs by H. pylori via cagA activated NF-κB pathway. Notably, we demonstrated that proinflammatory cytokines IL-1ß and TNFα have synergistic effects on ETS1 expression during H. pylori infection in an NF-κB-pathway-dependent manner. RNA-seq assay and Gene-ontology functional analysis revealed that ETS1 positively regulate inflammatory response during H. pylori infection. Increased ETS1 is also detected in the gastric mucosa of mice and patients with H. pylori infection. Collectively, these data showed that ETS1 may play an important role in the pathogenesis of H. pylori-associated gastritis.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/patologia , Gastrite/metabolismo , Gastrite/microbiologia , Helicobacter pylori/fisiologia , Inflamação/patologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Humanos , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proto-Oncogene Mas , Proteína Proto-Oncogênica c-ets-1/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
11.
JCI Insight ; 5(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32634127

RESUMO

Arrestin domain containing 3 (ARRDC3) represents a newly discovered α-arrestin involved in obesity, inflammation, and cancer. Here, we demonstrate a proinflammation role of ARRDC3 in Helicobacter pylori-associated gastritis. Increased ARRDC3 was detected in gastric mucosa of patients and mice infected with H. pylori. ARRDC3 in gastric epithelial cells (GECs) was induced by H. pylori, regulated by ERK and PI3K-AKT pathways in a cagA-dependent manner. Human gastric ARRDC3 correlated with the severity of gastritis, and mouse ARRDC3 from non-BM-derived cells promoted gastric inflammation. This inflammation was characterized by the CXCR2-dependent influx of CD45+CD11b+Ly6C-Ly6G+ neutrophils, whose migration was induced via the ARRDC3-dependent production of CXCL2 by GECs. Importantly, gastric inflammation was attenuated in Arrdc3-/- mice but increased in protease-activated receptor 1-/- (Par1-/-) mice. Mechanistically, ARRDC3 in GECs directly interacted with PAR1 and negatively regulated PAR1 via ARRDC3-mediated lysosomal degradation, which abrogated the suppression of CXCL2 production and following neutrophil chemotaxis by PAR1, thereby contributing to the development of H. pylori-associated gastritis. This study identifies a regulatory network involving H. pylori, GECs, ARRDC3, PAR1, and neutrophils, which collectively exert a proinflammatory effect within the gastric microenvironment. Efforts to inhibit this ARRDC3-dependent pathway may provide valuable strategies in treating of H. pylori-associated gastritis.


Assuntos
Arrestinas/metabolismo , Arrestinas/fisiologia , Mucosa Gástrica/patologia , Gastrite/patologia , Infecções por Helicobacter/complicações , Inflamação/patologia , Receptor PAR-1/fisiologia , Animais , Arrestinas/genética , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Gastrite/metabolismo , Gastrite/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Inflamação/metabolismo , Inflamação/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Cell Death Dis ; 11(3): 189, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184393

RESUMO

Adrenomedullin (ADM) is a multifunctional peptide that is expressed by many surface epithelial cells, but its relevance to Helicobacter pylori (H. pylori)-induced gastritis is unknown. Here, we found that gastric ADM expression was elevated in gastric mucosa of H. pylori-infected patients and mice. In H. pylori-infected human gastric mucosa, ADM expression was positively correlated with the degree of gastritis; accordingly, blockade of ADM resulted in decreased inflammation within the gastric mucosa of H. pylori-infected mice. During H. pylori infection, ADM production was promoted via PI3K-AKT signaling pathway activation by gastric epithelial cells in a cagA-dependent manner, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterized by the increased IFN-γ-producing T cells, whose differentiation was induced via the phosphorylation of AKT and STAT3 by ADM derived from gastric epithelial cells. ADM also induced macrophages to produce IL-12, which promoted the IFN-γ-producing T-cell responses, thereby contributing to the development of H. pylori-associated gastritis. Accordingly, blockade of IFN-γ or knockout of IFN-γ decreased inflammation within the gastric mucosa of H. pylori-infected mice. This study identifies a novel regulatory network involving H. pylori, gastric epithelial cells, ADM, macrophages, T cells, and IFN-γ, which collectively exert a pro-inflammatory effect within the gastric microenvironment.


Assuntos
Adrenomedulina/efeitos adversos , Gastrite/genética , Helicobacter pylori/patogenicidade , Interferon gama/metabolismo , Linfócitos T/metabolismo , Vasodilatadores/efeitos adversos , Animais , Gastrite/metabolismo , Humanos , Camundongos
13.
FASEB J ; 34(1): 1169-1181, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914631

RESUMO

BHLHE40, a member of the basic helix-loop-helix transcription factor family, has been reported to play an important role in inflammatory diseases. However, the regulation and function of BHLHE40 in Helicobacter pylori (H pylori)-associated gastritis is unknown. We observed that gastric BHLHE40 was significantly elevated in patients and mice with H pylori infection. Then, we demonstrate that H pylori-infected GECs express BHLHE40 via cagA-ERK pathway. BHLHE40 translocates to cell nucleus, and then binds to cagA protein-activated p-STAT3 (Tyr705). The complex increases chemotactic factor CXCL12 expression (production). Release of CXCL12 from GECs fosters CD4+ T cell infiltration in the gastric mucosa. Our results identify the cagA-BHLHE40-CXCL12 axis that contributes to inflammatory response in gastric mucosa during H pylori infection.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Quimiocina CXCL12/metabolismo , Células Epiteliais/metabolismo , Gastrite/microbiologia , Infecções por Helicobacter/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Núcleo Celular/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Gastrite/metabolismo , Regulação da Expressão Gênica , Helicobacter pylori , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Estômago/microbiologia , Regulação para Cima
14.
Sci Adv ; 5(4): eaau6547, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949574

RESUMO

The interaction between gastric epithelium and immune response plays key roles in H. pylori-associated pathology. We demonstrated a procolonization and proinflammation role of MMP-10 in H. pylori infection. MMP-10 is elevated in gastric mucosa and is produced by gastric epithelial cells synergistically induced by H. pylori and IL-22 via the ERK pathway. Human gastric MMP-10 was correlated with H. pylori colonization and the severity of gastritis, and mouse MMP-10 from non-BM-derived cells promoted bacteria colonization and inflammation. H. pylori colonization and inflammation were attenuated in IL-22-/-, MMP-10-/-, and IL-22-/-MMP-10-/- mice. MMP-10-associated inflammation is characterized by the influx of CD8+ T cells, whose migration is induced via MMP-10-CXCL16 axis by gastric epithelial cells. Under the influence of MMP-10, Reg3a, E-cadherin, and zonula occludens-1 proteins decrease, resulting in impaired host defense and increased H. pylori colonization. Our results suggest that MMP-10 facilitates H. pylori persistence and promotes gastritis.


Assuntos
Gastrite/metabolismo , Gastrite/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Metaloproteinase 10 da Matriz/metabolismo , Animais , Biomarcadores , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CXCL16/metabolismo , Modelos Animais de Doenças , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Expressão Gênica , Infecções por Helicobacter/genética , Humanos , Interleucinas/metabolismo , Metaloproteinase 10 da Matriz/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Interleucina 22
15.
J Cell Physiol ; 234(9): 15698-15707, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30710368

RESUMO

Heat shock proteins (HSPs) are crucial proteins in maintaining the homeostasis of human gastric epithelial cells. Tumor necrosis factor receptor-associated protein 1 (TRAP1), a member of the HSP90 family, has been shown to be involved in various crucial physiological processes, particularly against apoptosis. However, the regulation and function of TRAP1 in Helicobacter pylori infection is still unknown. Here, we found that TRAP1 expression was downregulated on human gastric epithelial cells during H. pylori infection by real-time polymerase chain reaction (PCR) and western blot analysis. Through virulence factors mutant H. pylori strains infection and inhibitors screening, we found that H. pylori vacuolating cytotoxin A ( vacA), but not cytotoxin-associated gene A ( cagA) protein, induced human gastric epithelial cells to downregulate TRAP1 via P38MAPK pathway by real-time PCR and western blot analysis. Furthermore, downregulation of TRAP1 with lentivirus carrying TRAP1 short hairpin RNA constructs impairs mitochondrial function, and increases apoptosis of gastric epithelial cells. The results indicate that H. pylori vacA downregulated TRAP1 is involved in the regulation of gastric epithelial cell apoptosis.

16.
J Immunother Cancer ; 7(1): 54, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808413

RESUMO

BACKGROUND: Mast cells are prominent components of solid tumors and exhibit distinct phenotypes in different tumor microenvironments. However, the nature, regulation, function, and clinical relevance of mast cells in human gastric cancer (GC) are presently unknown. METHODS: Flow cytometry analyses were performed to examine level and phenotype of mast cells in samples from 114 patients with GC. Multivariate analysis of prognostic factors for overall survival was performed using the Cox proportional hazards model. Kaplan-Meier plots for patient survival were performed using the log-rank test. Mast cells, T cells and tumor cells were isolated or generated, stimulated and/or cultured for in vitro and in vivo function assays. RESULTS: Patients with GC showed a significantly higher mast cell infiltration in tumors. Mast cell levels increased with tumor progression and independently predicted reduced overall survival. These tumor-infiltrating mast cells accumulated in tumors by CXCL12-CXCR4 chemotaxis. Intratumoral mast cells expressed higher immunosuppressive molecule programmed death-ligand 1 (PD-L1), and mast cells induced by tumors strongly express PD-L1 proteins in both time-dependent and dose-dependent manners. Significant correlations were found between the levels of PD-L1+ mast cells and pro-inflammatory cytokine TNF-α in GC tumors, and tumor-derived TNF-α activated NF-κB signaling pathway to induce mast cell expression of PD-L1. The tumor-infiltrating and tumor-conditioned mast cells effectively suppressed normal T-cell immunity through PD-L1 in vitro, and tumor-conditioned mast cells contributed to the suppression of T-cell immunity and the growth of human GC tumors in vivo; the effect could be reversed by blocking PD-L1 on these mast cells. CONCLUSION: Thus, our results illuminate novel immunosuppressive and protumorigenic roles of mast cells in GC, and also present a novel mechanism in which PD-L1 expressing mast cells link the proinflammatory response to immune tolerance in the GC tumor milieu.


Assuntos
Antígeno B7-H1/imunologia , Progressão da Doença , Tolerância Imunológica , Mastócitos/imunologia , Neoplasias Gástricas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linhagem Celular , Técnicas de Cocultura , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais , Neoplasias Gástricas/patologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
17.
Cell Death Dis ; 10(2): 79, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692510

RESUMO

Interleukin-17 receptor B (IL-17RB), a member of the IL-17 receptor family activated by IL-17B/IL-17E, has been shown to be involved in inflammatory diseases. However, the regulation and function of IL-17RB in Helicobacter pylori (H. pylori) infection, especially in the early-phase is still unknown. Here, we found that gastric IL-17RB mRNA and protein were decreased in gastric mucosa of both patients and mice infected with H. pylori. In vitro experiments show that IL-17RB expression was down regulated via PI3K/AKT pathway on gastric epithelial cells (GECs) stimulated with H. pylori in a cagA-involved manner, while in vivo studies showed that the effect was partially dependent on cagA expression. IL-17E was also decreased during the early-phase of H. pylori infection, and provision of exogenous IL-17E resulted in increased CD11b+CD11c- myeloid cells accumulation and decreased bacteria colonization within the gastric mucosa. In the early-phase of H. pylori infection, IL-17E-IL-17RB promoted gastric epithelial cell-derived CXCL1/2/5/6 to attract CD11b+CD11c- myeloid cells, and also contributed to host defense by promoting the production of antibacterial protein Reg3a. This study defines a negative regulatory network involving IL-17E, GECs, IL-17RB, CD11b+CD11c- myeloid cells, and Reg3a in the early-phase of H. pylori infection, which results in an impaired host defense within the gastric microenvironment, suggesting IL-17RB as a potential early intervening target in H. pylori infection.


Assuntos
Antígeno CD11b/imunologia , Antígeno CD11c/imunologia , Mucosa Gástrica/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/isolamento & purificação , Células Mieloides/imunologia , Receptores de Interleucina-17/imunologia , Animais , Antígenos CD11/biossíntese , Antígenos CD11/imunologia , Antígeno CD11b/biossíntese , Antígeno CD11b/sangue , Antígeno CD11c/biossíntese , Infecções por Helicobacter/sangue , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores de Interleucina-17/biossíntese , Receptores de Interleucina-17/genética
18.
Cell Death Dis ; 9(10): 1034, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305610

RESUMO

Mast cells are prominent components of solid tumors and exhibit distinct phenotypes in different tumor microenvironments. However, their precise mechanism of communication in gastric cancer remains largely unclear. Here, we found that patients with GC showed a significantly higher mast cell infiltration in tumors. Mast cell levels increased with tumor progression and independently predicted reduced overall survival. Tumor-derived adrenomedullin (ADM) induced mast cell degranulation via PI3K-AKT signaling pathway, which effectively promoted the proliferation and inhibited the apoptosis of GC cells in vitro and contributed to the growth and progression of GC tumors in vivo, and the effect could be reversed by blocking interleukin (IL)-17A production from these mast cells. Our results illuminate a novel protumorigenic role and associated mechanism of mast cells in GC, and also provide functional evidence for these mast cells to prevent, and to treat this immunopathogenesis feature of GC.


Assuntos
Adrenomedulina/metabolismo , Mastócitos/metabolismo , Mastócitos/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Progressão da Doença , Exocitose/fisiologia , Feminino , Humanos , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Estômago/patologia , Microambiente Tumoral/fisiologia
19.
J Immunol Res ; 2018: 6248590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30255106

RESUMO

Natural killer (NK) cell activity is influenced by a complex integration of signaling pathways activated downstream of both activating and inhibitory surface receptors. The tumor microenvironment can suppress NK cell activity, and there is a great clinical interest in understanding whether modulating tumor-mediated NK cell suppression and/or boosting preexisting NK cell numbers in cancer patients is therapeutically viable. To this light, we characterized the surface receptor phenotypes of peripheral blood NK cells and examined their clinical relevance to human gastric cancer (GC). We found that the proportion of peripheral blood NK cells which expressed the activating receptors NKp30, NKp46, NKG2D, and DNAM-1 was significantly decreased in GC patients compared to healthy donors, and that this decrease was positively associated with tumor progression. At the same time, plasma TGF-ß1 concentrations were significantly increased in GC patients and negatively correlated with the proportion of NKp30, NKp46, NKG2D, and DNAM-1 expressing NK cells. Furthermore, TGF-ß1 significantly downregulated the expression of NKp30, NKp46, NKG2D, and DNAM-1 on NK cells in vitro, and the addition of galunisertib, an inhibitor of the TGF-ß receptor subunit I, reversed this downregulation. Altogether, our data suggest that the decreased expression of activating receptors NKp30, NKp46, NKG2D, and DNAM-1 on peripheral blood NK cells is positively associated with GC progression, and that TGF-ß1-mediated NK cell suppression may be a therapeutically targetable characteristic of GC.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Neoplasias Gástricas/imunologia , Adulto , Idoso , Carcinogênese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Fator de Crescimento Transformador beta1/metabolismo , Evasão Tumoral
20.
Cell Death Dis ; 9(7): 763, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29988030

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a prominent component of the pro-tumoral response. The phenotype of and mechanisms used by MDSCs is heterogeneous and requires more precise characterization in gastric cancer (GC) patients. Here, we have identified a novel subset of CD45+CD33lowCD11bdim MDSCs in the peripheral blood of GC patients compared to healthy individuals. CD45+CD33lowCD11bdim MDSCs morphologically resembled neutrophils and expressed high levels of the neutrophil marker CD66b. Circulating CD45+CD33lowCD11bdim MDSCs effectively suppressed CD8+ T cells activity through the inhibition of CD8+ T cell proliferation and interferon-γ (IFN-γ) and granzyme B (GrB) production. The proportion of CD45+CD33lowCD11bdim MDSCs also negatively correlated with the proportion of IFN-γ+CD8+ T cell in the peripheral blood of GC patients. GC patient serum-derived IL-6 and IL-8 activated and induced CD45+CD33lowCD11bdim MDSCs to express arginase I via the PI3K-AKT signaling pathway. This pathway contributed to CD8+ T cell suppression as it was partially rescued by the blockade of the IL-6/IL-8-arginase I axis. Peripheral blood CD45+CD33lowCD11bdim MDSCs, as well as IL-6, IL-8, and arginase I serum levels, positively correlated with GC progression and negatively correlated with overall patient survival. Altogether, our results highlight that a subset of neutrophilic CD45+CD33lowCD11bdim MDSCs is functionally immunosuppressive and activated via the IL-6/IL-8-arginase I axis in GC patients.


Assuntos
Arginase/metabolismo , Antígeno CD11b/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Células Supressoras Mieloides/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Neoplasias Gástricas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Arginase/genética , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA